Καλώς ήρθατε στην διαδικτυακή μας κοινότητα.
Εδώ μπορείτε να συζητήσετε και να ενημερωθείτε για θέματα που αφορούν την Πρωτοβάθμια Φροντίδα Υγείας.
Για να συμμετέχετε και να μπορείτε να κατεβάσετε αρχεία και εικόνες που βρίσκονται στα μηνύματα πρέπει να εγγραφείτε.
Η εγγραφή είναι δωρεάν και θα σας αποσταλεί άμεσα ένα e-mail για την ενεργοποίηση της εγγραφής σας.
Εάν δεν το λάβετε σε λίγα λεπτά ελέγξετε το φάκελο ομαδικής αλληλογραφίας ή το φάκελο SPAM ή το φάκελο ανεπιθύμητης αλληλογραφίας καθώς μπορεί να βρεθεί εκεί από λάθος του λογισμικού ηλεκτρονικού ταχυδρομείου.
Εάν έχετε ξεχάσει τον κωδικό σας, μπορείτε να ζητήσετε να σας ξανασταλεί από εδώ.
18 Νοεμβρίου 2024, 12:21:08

Αποστολέας Θέμα: Βιοστατιστική και επιδημιολογία  (Αναγνώστηκε 54684 φορές)

0 μέλη και 1 επισκέπτης διαβάζουν αυτό το θέμα.

3 Οκτωβρίου 2011, 19:31:32
Αναγνώστηκε 54684 φορές
Αποσυνδεδεμένος

medicus


Eur J Epidemiol. 2011 Jun;26(6):433-8

Estimating measures of interaction on an additive scale for preventive exposures.
Knol MJ, VanderWeele TJ, Groenwold RH, Klungel OH, Rovers MM, Grobbee DE.
Source
Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, GA, Utrecht, The Netherlands. m.j.knol@umcutrecht.nl


Abstract
Measures of interaction on an additive scale (relative excess risk due to interaction (RERI), attributable proportion (AP), synergy index (S)), were developed for risk factors rather than preventive factors. It has been suggested that preventive factors should be recoded to risk factors before calculating these measures. We aimed to show that these measures are problematic with preventive factors prior to recoding, and to clarify the recoding method to be used to circumvent these problems. Recoding of preventive factors should be done such that the stratum with the lowest risk becomes the reference category when both factors are considered jointly (rather than one at a time). We used data from a case-control study on the interaction between ACE inhibitors and the ACE gene on incident diabetes. Use of ACE inhibitors was a preventive factor and DD ACE genotype was a risk factor. Before recoding, the RERI, AP and S showed inconsistent results (RERI = 0.26 [95%CI: -0.30; 0.82], AP = 0.30 [95%CI: -0.28; 0.88], S = 0.35 [95%CI: 0.02; 7.38]), with the first two measures suggesting positive interaction and the third negative interaction. After recoding the use of ACE inhibitors, they showed consistent results (RERI = -0.37 [95%CI: -1.23; 0.49], AP = -0.29 [95%CI: -0.98; 0.40], S = 0.43 [95%CI: 0.07; 2.60]), all indicating negative interaction. Preventive factors should not be used to calculate measures of interaction on an additive scale without recoding.
« Τελευταία τροποποίηση: 4 Οκτωβρίου 2011, 17:19:25 από medicus »
Medicus curat,
Deus sanat

12 Οκτωβρίου 2011, 17:54:09
Απάντηση #1
Αποσυνδεδεμένος

medicus


Μία γρήγορη επανάληψη των βασικών εννοιών της στατιστικής.







Medicus curat,
Deus sanat

14 Οκτωβρίου 2011, 09:08:52
Απάντηση #2
Αποσυνδεδεμένος

medicus


Κεντρικό Οριακό Θεώρημα: το άθροισμα και -επομένως- η μέση τιμή, μεγάλου αριθμού ανεξάρτητων παρατηρήσεων, ακολουθεί κατά προσέγγιση κανονική κατανομή, ανεξαρτήτως από το ποια κατανομή ακολουθούν οι παρατηρήσεις.

Πώς, όμως, αυτό το αποτέλεσμα ερμηνεύει τη μεγάλη εφαρμοσιμότητα της κανονικής κατανομής;

Σε πολλά φαινόμενα και πειράματα, οι τιμές διαφόρων χαρακτηριστικών (μεταβλητών), είναι αποτέλεσμα αθροιστικής επίδρασης πολλών ανεξάρτητων αιτίων-παραγόντων κανένα από τα οποία δεν υπερισχύει των άλλων. Για παράδειγμα, ο χρόνος αναμονής σε μια ουρά, είναι αποτέλεσμα πολλών παραγόντων, όπως, η ημέρα της εβδομάδας, η ώρα της ημέρας, η αποτελεσματικότητα του υπαλλήλου, το είδος της συναλλαγής που διεκπεραιώνεται, κ.ά. Επίσης, το βάρος των ζώων μιας κτηνοτροφικής μονάδας, οφείλεται σύμφωνα με τους ειδικούς, σε πληθώρα παραγόντων όπως, η ατομικότητα του ζώου, η φυλή, το γένος, οι συνθήκες διατροφής κ.ά.

Καθένας από τους παράγοντες αυτούς επιφέρει ένα θετικό ή αρνητικό αποτέλεσμα και όλοι μαζί αθροιστικά συντελούν στη διαμόρφωση του τελικού αποτελέσματος. Τέτοια χαρακτηριστικά (μεταβλητές), εμφανίζονται σε πολλά φαινόμενα και πειράματα. Το Κεντρικό Οριακό Θεώρημα λεει ότι αυτά ακριβώς τα χαρακτηριστικά περιγράφονται ικανοποιητικά από την κανονική κατανομή. Επιπλέον, το Κεντρικό Οριακό Θεώρημα συνδέει την κανονική κατανομή με οποιαδήποτε άλλη κατανομή (αφού δεν προϋποθέτει να ακολουθούν οι παρατηρήσεις την κανονική κατανομή), γεγονός το οποίο, απαντάει, επίσης, στο ερώτημα, γιατί η κανονική κατανομή βρίσκει εφαρμογή σε μεγάλο πλήθος φαινομένων και πειραμάτων.

Medicus curat,
Deus sanat

17 Οκτωβρίου 2011, 19:51:18
Απάντηση #3
Αποσυνδεδεμένος

medicus


Effect Size Calculators

Δεν είναι ορατοί οι σύνδεσμοι (links). Εγγραφή ή Είσοδος
Medicus curat,
Deus sanat

18 Οκτωβρίου 2011, 10:57:35
Απάντηση #4
Αποσυνδεδεμένος

medicus


Medicus curat,
Deus sanat

19 Οκτωβρίου 2011, 18:49:10
Απάντηση #5
Αποσυνδεδεμένος

medicus


Odds ratio versus relative risk


Both the odds ratio and the relative risk compare the likelihood of an event between two groups. Consider the following data on survival of passengers on the Titanic. There were 462 female passengers: 308 survived and 154 died. There were 851 male passengers: 142 survived and 709 died (see table below).

            Alive   Dead   Total
Female   308   154   462
Male           142   709   851
Total           450   863   1,313
Clearly, a male passenger on the Titanic was more likely to die than a female passenger. But how much more likely? You can compute the odds ratio or the relative risk to answer this question.

The odds ratio compares the relative odds of death in each group. For females, the odds were exactly 2 to 1 against dying (154/308=0.5). For males, the odds were almost 5 to 1 in favor of death (709/142=4.993). The odds ratio is 9.986 (4.993/0.5). There is a ten fold greater odds of death for males than for females.

The relative risk (sometimes called the risk ratio) compares the probability of death in each group rather than the odds. For females, the probability of death is 33% (154/462=0.3333). For males, the probability is 83% (709/851=0.8331). The relative risk of death is 2.5 (0.8331/0.3333). There is a 2.5 greater probability of death for males than for females.

There is quite a difference. Both measurements show that men were more likely to die. But the odds ratio implies that men are much worse off than the relative risk. Which number is a fairer comparison?

There are three issues here: The relative risk measures events in a way that is interpretable and consistent with the way people really think. The relative risk, though, cannot always be computed in a research design. Also, the relative risk can sometimes lead to ambiguous and confusing situations. But first, we need to remember that fractions are funny.



Fractions are funny.

Suppose you invested money in a stock. On the first day, the value of the stock decreased by 20%. On the second day it increased by 20%. You would think that you have broken even, but that's not true.

Take the value of the stock and multiply by 0.8 to get the price after the first day. Then multiply by 1.2 to get the price after the second day. The successive multiplications do not cancel out because 0.8 * 1.2 = 0.96. A 20% decrease followed by a 20% increase leaves you slightly worse off.

It turns out that to counteract a 20% decrease, you need a 25% increase. That is because 0.8 and 1.25 are reciprocal. This is easier to see if you express them as simple fractions: 4/5 and 5/4 are reciprocal fractions. Listed below is a table of common reciprocal fractions.

0.8 (4/5)   1.25 (5/4)
0.75 (3/4)   1.33 (4/3)
0.67 (2/3)   1.50 (3/2)
0.50 (1/2)   2.00 (2/1)
Sometimes when we are comparing two groups, we'll put the first group in the numerator and the other in the denominator. Sometimes we will reverse ourselves and put the second group in the numerator. The numbers may look quite different (e.g., 0.67 and 1.5) but as long as you remember what the reciprocal fraction is, you shouldn't get too confused.

For example, we computed 2.5 as the relative risk in the example above. In this calculation we divided the male probability by the female probability. If we had divided the female probability by the male probability, we would have gotten a relative risk of 0.4. This is fine because 0.4 (2/5) and 2.5 (5/2) are reciprocal fractions.



Interpretability

The most commonly cited advantage of the relative risk over the odds ratio is that the former is the more natural interpretation.

The relative risk comes closer to what most people think of when they compare the relative likelihood of events. Suppose there are two groups, one with a 25% chance of mortality and the other with a 50% chance of mortality. Most people would say that the latter group has it twice as bad. But the odds ratio is 3, which seems too big. The latter odds are even (1 to 1) and the former odds are 3 to 1 against.

Even more extreme examples are possible. A change from 25% to 75% mortality represents a relative risk of 3, but an odds ratio of 9.

A change from 10% to 90% mortality represents a relative risk of 9 but an odds ratio of 81.

There are some additional issues about interpretability that are beyond the scope of this paper. In particular, both the odds ratio and the relative risk are computed by division and are relative measures. In contrast, absolute measures, computed as a difference rather than a ratio, produce estimates with quite different interpretations (Fahey et al 1995, Naylor et al 1992).



Designs that rule out the use of the relative risk

Some research designs, particularly the case-control design, prevent you from computing a relative risk. A case-control design involves the selection of research subjects on the basis of the outcome measurement rather than on the basis of the exposure.

Consider a case-control study of prostate cancer risk and male pattern balding. The goal of this research was to examine whether men with certain hair patterns were at greater risk of prostate cancer. In that study, roughly equal numbers of prostate cancer patients and controls were selected. Among the cancer patients, 72 out of 129 had either vertex or frontal baldness compared to 82 out of 139 among the controls (see table below).

           Cancer cases   Controls   Total
Balding                72          82    154
Hairy                        55          57    112
Total                      129        139    268
In this type of study, you can estimate the probability of balding for cancer patients, but you can't calculate the probability of cancer for bald patients. The prevalence of prostate cancer was artificially inflated to almost 50% by the nature of the case-control design.

So you would need additional information or a different type of research design to estimate the relative risk of prostate cancer for patients with different types of male pattern balding. Contrast this with data from a cohort study of male physicians (Lotufo et al 2000). In this study of the association between male pattern baldness and coronary heart disease, the researchers could estimate relative risks, since 1,446 physicians had coronary heart disease events during the 11-year follow-up period.

For example, among the 8,159 doctors with hair, 548 (6.7%) developed coronary heart disease during the 11 years of the study. Among the 1,351 doctors with severe vertex balding, 127 (9.4%) developed coronary heart disease (see table below). The relative risk is 1.4 = 9.4% / 6.7%.

          Heart disease   Healthy           Total
Balding   127 (9.4%)   1,224 (90.6%)   1,351
Hairy           548 (6.7%)   7,611 (93.3%)   8,159
Total           675                   8,835           9,510
You can always calculate and interpret the odds ratio in a case control study. It has a reasonable interpretation as long as the outcome event is rare (Breslow and Day 1980, page 70). The interpretation of the odds ratio in a case-control design is, however, also dependent on how the controls were recruited (Pearce 1993).

Another situation which calls for the use of odds ratio is covariate adjustment. It is easy to adjust an odds ratio for confounding variables; the adjustments for a relative risk are much trickier.

In a study on the likelihood of pregnancy among people with epilepsy (Schupf and Ottman 1994), 232 out of 586 males with idiopathic/cryptogenic epilepsy had fathered one or more children. In the control group, the respective counts were 79 out of 109 (see table below).

          Children    No children   Total
Epilepsy   232 (40%)    354 (60%)   586
Control   79 (72%)    30 (28%)           109
Total         311          384                   695
The simple relative risk is 0.55 and the simple odds ratio is 0.25. Clearly the probability of fathering a child is strongly dependent on a variety of demographic variables, especially age (the issue of marital status was dealt with by a separate analysis). The control group was 8.4 years older on average (43.5 years versus 35.1), showing the need to adjust for this variable. With a multivariate logistic regression model that included age, education, ethnicity and sibship size, the adjusted odds ratio for epilepsy status was 0.36. Although this ratio was closer to 1.0 than the crude odds ratio, it was still highly significant. A comparable adjusted relative risk would be more difficult to compute (although it can be done as in Lotufo et al 2000).



Ambiguous and confusing situations

The relative risk can sometimes produce ambiguous and confusing situations. Part of this is due to the fact that relative measurements are often counter-intuitive. Consider an interesting case of relative comparison that comes from a puzzle on the Car Talk radio show. You have a hundred pound sack of potatoes. Let's assume that these potatoes are 99% water. That means 99 parts water and 1 part potato. These are soggier potatoes than I am used to seeing, but it makes the problem more interesting.

If you dried out the potatoes completely, they would only weigh one pound. But let's suppose you only wanted to dry out the potatoes partially, until they were 98% water. How much would they weigh then?

The counter-intuitive answer is 50 pounds. 98% water means 49 parts water and 1 part potato. An alternative way of thinking about the problem is that in order to double the concentration of potato (from 1% to 2%), you have to remove about half of the water.

Relative risks have the same sort of counter-intuitive behavior. A small relative change in the probability of a common event's occurrence can be associated with a large relative change in the opposite probability (the probability of the event not occurring).

Consider a recent study on physician recommendations for patients with chest pain (Schulman et al 1999). This study found that when doctors viewed videotape of hypothetical patients, race and sex influenced their recommendations. One of the findings was that doctors were more likely to recommend cardiac catheterization for men than for women. 326 out of 360 (90.6%) doctors viewing the videotape of male hypothetical patients recommended cardiac catheterization, while only 305 out of 360 (84.7%) of the doctors who viewed tapes of female hypothetical patients made this recommendation.

                       No cath      Cath           Total
Male patient   34 (9.4%)      326 (90.6%)   360
Female patient   55 (15.3%)   305 (84.7%)   360
Total                   89              631           720
The odds ratio is either 0.57  or 1.74, depending on which group you place in the numerator. The authors reported the odds ratio in the original paper and concluded that physicians make different recommendations for male patients than for female patients.

A critique of this study (Schwarz et al 1999) noted among other things that the odds ratio overstated the effect, and that the relative risk was only 0.93 (reciprocal 1.07). In this study, however, it is not entirely clear that 0.93 is the appropriate risk ratio. Since 0.93 is so much closer to 1 and 0.57, the critics claimed that the odds ratio overstated the tendency for physicians to make different recommendations for male and female patients.

Although the relative change from 90.6% to 84.7% is modest, consider the opposite perspective. The rates for recommending a less aggressive intervention than catheterization was 15.3% for doctors viewing the female patients and 9.4% for doctors viewing the male patients, a relative risk of 1.63 (reciprocal 0.61).

This is the same thing that we just saw in the Car Talk puzzler: a small relative change in the water content implies a large relative change in the potato content. In the physician recommendation study, a small relative change in the probability of a recommendation in favor of catheterization corresponds to a large relative change in the probability of recommending against catheterization.

Thus, for every problem, there are two possible ways to compute relative risk. Sometimes, it is obvious which relative risk is appropriate. For the Titanic passengers, the appropriate risk is for death rather than survival. But what about a breast feeding study. Are we trying to measure how much an intervention increases the probability of breast feeding success or are we trying to see how much the intervention decreases the probability of breast feeding failure? For example, Deeks 1998 expresses concern about an odds ratio calculation in a study aimed at increasing the duration of breast feeding. At three months, 32/51 (63%) of the mothers in the treatment group had stopped breast feeding compared to 52/57 (91%) in the control group.

           Continued bf   Stopped bf     Total
Treatment   19 (37.3%)   32 (62.7%)   51
Control     5 (8.8%)     52 (91.2%)   57
Total           24                   84                   108
While the relative risk of 0.69 (reciprocal 1.45) for this data is much less extreme than the odds ratio of 0.16 (reciprocal 6.2), one has to wonder why Deeks chose to compare probabilities of breast feeding failures rather than successes. The rate of successful breast feeding at three months was 4.2 times higher in the treatment group than the control group. This is still not as extreme as the odds ratio; the odds ratio for successful breast feeding is 6.25, which is simply the inverse of the odds ratio for breast feeding failure.

One advantage of the odds ratio is that it is not dependent on whether we focus on the event's occurrence or its failure to occur. If the odds ratio for an event deviates substantially from 1.0, the odds ratio for the event's failure to occur will also deviate substantially from 1.0, though in the opposite direction.



Summary

Both the odds ratio and the relative risk compare the relative likelihood of an event occurring between two distinct groups. The relative risk is easier to interpret and consistent with the general intuition. Some designs, however, prevent the calculation of the relative risk. Also there is some ambiguity as to which relative risk you are comparing. When you are reading research that summarizes the data using odds ratios, or relative risks, you need to be aware of the limitations of both of these measures.




Bibliography

When can odds ratios mislead? Odds ratios should be used only in case-control studies and logistic regression analyses [letter]. Deeks J. British Medical Journal 1998:317(7166);1155-6; discussion 1156-7.

Evidence-based purchasing: understanding results of clinical trials and systematic reviews. Fahey T, Griffiths S and Peters TJ. British Medical Journal 1995:311(7012);1056-9; discussion 1059-60.

Interpretation and Choice of Effect Measures in Epidemiologic Analyses. Greenland S. American Journal of Epidemiology 1987:125(5);761-767.

Male Pattern Baldness and Coronary Heart Disease: The Physician's Health Study. Lotufo PA. Archives of Internal Medicine 2000:160(165-171.

Measured Enthusiasm: Does the Method of Reporting Trial Results Alter Perceptions of Therapeutic Effectiveness? Naylor C, Chen E and Strauss B. American College of Physicians 1992:117(11);916-21.

What Does the Odds Ratio Estimate in a Case-Control Study? Pearce N. Int J Epidemiol 1993:22(6);1189-92.

Likelihood of Pregnancy in Individuals with Idiopathic/Cryptogenic Epilepsy: Social and Biologic Influences. Schupf N. Epilepsia 1994:35(4);750-756.

A Haircut in Horse Town: And Other Great Car Talk Puzzlers. (1999) Tom Magliozzi, Ray Magliozzi, Douglas Berman. New York NY: Berkley Publishing Group.
« Τελευταία τροποποίηση: 19 Οκτωβρίου 2011, 18:54:51 από medicus »
Medicus curat,
Deus sanat

28 Δεκεμβρίου 2011, 09:38:51
Απάντηση #6
Αποσυνδεδεμένος

medicus


Medicus curat,
Deus sanat

16 Ιανουαρίου 2012, 19:52:29
Απάντηση #7
Αποσυνδεδεμένος

medicus


Medicus curat,
Deus sanat

17 Ιανουαρίου 2012, 09:39:01
Απάντηση #8
Αποσυνδεδεμένος

medicus


Medicus curat,
Deus sanat

24 Ιανουαρίου 2012, 19:20:56
Απάντηση #9
Αποσυνδεδεμένος

medicus


Το Epi Info είναι ένα πολύ ισχυρό ηλεκτρονικό εργαλείο, για όσους ασχολούνται με επιδημιολογικές μελέτες.

Medicus curat,
Deus sanat

25 Ιανουαρίου 2012, 11:44:54
Απάντηση #10
Αποσυνδεδεμένος

medicus


Comparison of statistical packages

Δεν είναι ορατοί οι σύνδεσμοι (links). Εγγραφή ή Είσοδος
Medicus curat,
Deus sanat

30 Ιανουαρίου 2012, 18:42:19
Απάντηση #11
Αποσυνδεδεμένος

medicus


Μία κατανοητή και αρκετά παραστατική παρουσίαση της ΑΝΑΛΥΣΗΣ ΣΕ ΚΥΡΙΕΣ ΣΥΝΙΣΤΩΣΕΣ(Principal Components Analysis).

Η PCA είναι μία βασική μέθοδος της Πολυμεταβλητής Στατιστικής Ανάλυσης, η οποία αποσκοπεί στην εύρεση γραμμικών συνδυασμών των αρχικών δεδομένων έτσι ώστε η πληροφορία να μη χάνεται αλλά οι νέες μεταβλητές, οι συνιστώσες, να είναι ασυσχέτιστες μεταξύ τους.

Η μέθοδος ουσιαστικά ερμηνεύει τις συσχετίσεις ανάμεσα στις αρχικές μεταβλητές, μειώνει τις διαστάσεις του αρχικού προβλήματος και επιτρέπει απλή ερμηνεία με τη δημιουργία απλών γραφημάτων, που όμως επιτρέπουν, με τη σειρά τους, την αποκάλυψη ενδιαφερουσών σχέσεων στα δεδομένα μας.

Τα περισσότερα "σοβαρά" βιοστατιστικά ηλεκτρονικά πακέτα διαθέτουν, πλέον, στη φαρέτρα τους πλήρη γκάμα γραφικών και παραλλαγών της συγκεκριμένης μεθόδου. H PCA έχει χρησιμοποιηθεί, τις προηγούμενες τρεις δεκαετίες, με απόλυτη επιτυχία στις κοινωνικές επιστήμες και ήδη έχει αρχίσει να "κατακτά" και τον ιατρικό χώρο.

Είναι αρκετά σημαντική, ίσως η πιο σημαντική, μέθοδος που "παντρεύει" την φυσιοπαθολογία με την ψυχοπαθολογία και της δίνει μαθηματική υπόσταση, έτσι ώστε να αποκαλύψει νέες διαγνωστικές, θεραπευτικές και προληπτικές μεθόδους στο χώρο της υγείας.  

« Τελευταία τροποποίηση: 30 Ιανουαρίου 2012, 18:49:21 από medicus »
Medicus curat,
Deus sanat

7 Φεβρουαρίου 2012, 10:48:46
Απάντηση #12
Αποσυνδεδεμένος

medicus


Medicus curat,
Deus sanat

9 Φεβρουαρίου 2012, 19:48:16
Απάντηση #13
Αποσυνδεδεμένος

medicus


Measures of Effect Size of an Intervention

A key question needed to interpret the results of a clinical trial is whether the measured effect size is clinically important. Three commonly used measures of effect size are relative risk reduction (RRR), absolute risk reduction (ARR), and the number needed to treat (NNT) to prevent one bad outcome. These terms are defined below. The material in this section is adapted from Evidence-based medicine: How to practice and teach EBM by DL Sackett, WS Richardson, W Rosenberg and RB Haynes. 1997, New York: Churchill Livingston.

Consider the data from the Diabetes Control and Complications Trial (DCCT-Ann Intern Med 1995;122:561-8.). Neuropathy occurred in 9.6% of the usual care group and in 2.8% of the intensively treated group. These rates are sometimes referred to as risks by epidemiologists. For our purposes, risk can be thought of as the rate of some outcome.



Relative risk reduction

Relative risk measures how much the risk is reduced in the experimental group compared to a control group. For example, if 60% of the control group died and 30% of the treated group died, the treatment would have a relative risk reduction of 0.5 or 50% (the rate of death in the treated group is half of that in the control group).

The formula for computing relative risk reduction is: (CER - EER)/CER. CER is the control group event rate and EER is the experimental group event rate. Using the DCCT data, this would work out to (0.096 - 0.028)/0.096 = 0.71 or 71%. This means that neuropathy was reduced by 71% in the intensive treatment group compared with the usual care group.

One problem with the relative risk measure is that without knowing the level of risk in the control group, one cannot assess the effect size in the treatment group. Treatments with very large relative risk reductions may have a small effect in conditions where the control group has a very low bad outcome rate. On the other hand, modest relative risk reductions can assume major clinical importance if the baseline (control) rate of bad outcomes is large.



Absolute risk reduction

Absolute risk reduction is just the absolute difference in outcome rates between the control and treatment groups: CER - EER. The absolute risk reduction does not involve an explicit comparison to the control group as in the relative risk reduction and thus, does not confound the effect size with the baseline risk. However, it is a less intuitve measure to interpret.

For the DCCT data, the absolute risk reduction for neuropathy would be (0.096 - 0.028) = 0.068 or 6.8%. This means that for every 100 patients enrolled in the intensive treatment group, about seven bad outcomes would be averted.



Number needed to treat

The number needed to treat is basically another way to express the absolute risk reduction. It is just 1/ARR and can be thought of as the number of patients that would need to be treated to prevent one additional bad outcome. For the DCCT data, NNT = 1/.068 = 14.7. Thus, for every 15 patients treated with intensive therapy, one case of neuropathy would be prevented.

The NNT concept has been gaining in popularity because of its simplicity to compute and its ease of interpretion. NNT data are especially useful in comparing the results of multiple clinical trials in which the relative effectiveness of the treatments are readily apparent. For example, the NNT to prevent stroke by treating patients with very high blood pressures (DBP 115-129) is only 3 but rises to 128 for patients with less severe hypertension (DBP 90-109).
Medicus curat,
Deus sanat

15 Φεβρουαρίου 2012, 11:57:01
Απάντηση #14
Αποσυνδεδεμένος

medicus


ΠΡΟΣΩΠΑ ΤΟΥ CHERNOFF

Είναι γραφήµατα που η κάθε παρατήρηση απεικονίζεται σαν πρόσωπο. Κάθε µεταβλητή καθορίζει ένα συγκεκριµένο χαρακτηριστικό του προσώπου. Είναι από τους αποτελεσματικότερους τρόπους για ν'απεικονίσει κανείς πολυμεταβλητά δεδομένα. Μπορεί να είναι στατική ή και δυναμική η απεικόνιση, δίνοντας έτσι τη δυνατότητα μελέτης και της μεταβλητής του χρόνου.

Η συγκεκριμένη μέθοδος είναι διαδεδοµένη στις κοινωνικές επιστήµες και την ψυχολογία. Από πολλούς επιδημιολόγους θεωρείται ένα πολύ σημαντικό εργαλείο γραφικής απεικόνισης, ιδιαίτερα στο χώρο της πρωτοβάθμιας υγείας και στην ιστολογική διερεύνηση της φυσιοπαθολογίας.





 
Medicus curat,
Deus sanat

 

Σχετικά θέματα

  Τίτλος / Ξεκίνησε από Απαντήσεις Τελευταίο μήνυμα
5 Απαντήσεις
6705 Εμφανίσεις
Τελευταίο μήνυμα 23 Ιουνίου 2014, 10:13:25
από potaphkatsarida
3 Απαντήσεις
5306 Εμφανίσεις
Τελευταίο μήνυμα 31 Ιανουαρίου 2021, 18:28:23
από Δ. Κουναλάκης